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1 Introduction

Chiral Perturbation Theory (ChPT) [1–3] as effective field theory (EFT) for QCD is a very

well established method within strong interaction phenomenology. The same method can

also be used for different symmetry pattern cases. These can be of interest for theories

beyond the standard model. Early papers in this context are the technicolor variations

discussed in [4–6]. Recently lattice calculations have started to explore some of these

cases, some recent references are [7]. While one is primarily interested in these theories

in the massless limit, lattice calculations are performed with finite masses and the results

thus need to be extrapolated to zero mass. For these extrapolations EFT is an excellent

tool and it is heavily used in fitting results for the pseudoscalar meson octet in the QCD

case. For high precision fits it is needed there to go to next-to-next-to-leading-order in the

ChPT expansion.

When writing the EFT relevant for dynamical electroweak symmetry breaking one

needs to consider different patterns of spontaneous breaking of the global symmetry than

in QCD. The resulting set of Goldstone Bosons, or pseudo-Goldstone bosons in the presence

of mass terms, is thus also different. The low-energy EFT is thus also different.

In this paper we only discuss cases where the underlying strong interaction is vectorlike

and all fermions have the same mass. Here three main patterns of global symmetry show

up. A thorough discussion of these cases at tree level or lowest order (LO) is [8]. With

a gauge group with NF fermions in a complex representation we have a global symmetry
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group SU(NF )L×SU(NF )R and we expect this to be spontaneously broken to the diagonal

subgroup SU(NF )V . This is the direct extension of the QCD case. For NF fermions in

a real representation the global symmetry group becomes SU(2NF ) and is expected to

be spontaneously broken to SO(2NF ). In the case of two colours and NF fermions in

the fundamental (pseudoreal) representation the global symmetry group is again SU(2NF )

but here is expected to be spontaneously broken to an Sp(2NF ) subgroup. Some earlier

references are [9–11]. The complex case was treated to next-to-leading-order (NLO) in [3]

in general and for the quantities considered here in [12]. The pseudo-real case has been

done to NLO in [13]. We repeat here both calculations and also extend the third, real, case

to NLO by calculating the full infinity structure for all three cases at NLO and giving the

NLO Lagrangian.

In addition we also go to NNLO for three explicit quantities, the vacuum-expectation-

value, the meson mass and the meson decay constant in the equal mass case. These

formulas are our main result. We expect that the NNLO Lagrangian for all cases will be

a simple generalization of the one for the complex case given in [14] but the calculation

of the general divergence structure, though in principle similar to the one in [15], we have

not performed.

In the remainder of this paper we refer to the complex representation case as QCD, the

real representation case as adjoint and the pseudo-real case as two-colour or Nc = 2. We

first discuss in section 2 the three different cases at the underlying fermion (quark) level.

Here we introduce explicit external fields as done in [2, 3]. Section 3 introduces the LO and

NLO effective field theory and we do this using the general formalism derived in [16]. This

allows to see how similar the calculations for the three cases are. In section 4 we derive

the divergent part at NLO and in section 5 we calculate the NNLO result for the meson

mass, meson decay constant and vacuum expectation value. In section 6 we summarize

our results.

2 Quark level

This section shortly introduces the quark-level Lagrangian giving the gauge groups and

showing how the condensates can be written in the more general cases. A more extensive

version of this discussion can be found in [8] and the earlier references [9, 11]. We remind

the reader that we only consider cases with an underlying simple vector gauge group and

we assume confinement and the formation of a condensate.

We use the notation qR and qL for the right- and left-handed fermions respectively.

Gauge indices we usually suppress and flavour indices will be indicated when needed.

2.1 QCD

This is the usual case where the fermions are in a complex representation of the gauge

group. With flavour indices i the fermion part of the Lagrangian enhanced by external

fields is given by

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM†
ijqRj . (2.1)

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
1
1
6

The covariant derivative is given by Dµq = ∂µq − iGµq.

When the external fields vanish there is a SU(NF )L × SU(NF )R symmetry in the

first two terms which is spontaneously broken to the diagonal subgroup SU(NF )V . This

symmetry can be made local by adding the external fields with the transformations gL ×
gR ∈ SU(NF )L × SU(NF )R:

qL → gLqL, qR → gRqR, M → gRMg†L ,

lµ → gLlµg
†
L + igL∂µg

†
L, rµ → gRrµg

†
L + igR∂µg

†
R . (2.2)

We have here written qL and qR as column vectors in flavour and the external fields lµ, rµ
and M = s− ip as matrices in flavour.

For later use, we define the big, 2NF , columnvector

q̂ =

(

qR
qL

)

(2.3)

and the big, 2NF × 2NF , matrices

V̂µ =

(

rµ 0

0 lµ

)

M̂ =

(

0 M
M† 0

)

, ĝ =

(

gR 0

0 gL

)

. (2.4)

In terms of these the symmetry transformation can be written as

q̂ → ĝq̂ , V̂µ → ĝV̂µĝ
† + iĝ∂µĝ

† , M̂ → ĝM̂ĝ† . (2.5)

Note that the symmetry group is not made larger since q̂ contains objects that have different

Lorentz properties.

The formation of a flavour neutral condensate 〈qq〉 = 〈qRqL〉 + h.c. breaks the full

symmetry spontaneously to the diagonal subgroup SU(NF )V

2.2 Adjoint

If the fermions are in the adjoint representations we can write down a similar Lagrangian

as above

L = trc (qLiiγ
µDµqLi) + trc (qRiiγ

µDµqRi) + trc (qLiγ
µlµijqLj) + trc (qRiγ

µrµijqRj)

−trc (qRiMijqLj) − trc

(

qLiM†
ijqRj

)

. (2.6)

trc (A) means a trace over the gauge group indices and the fermions are a matrix rather

than a vector in the gauge group indices and Dµq = ∂µq − iGµq + iqGµ. Here we have the

same transformation for the conjugated fermions, Dµq = ∂µ − iGµq + iqGµ with q = q†γ0

and the Hermitian conjugate also means that the two gauge-indices are transposed. The

symmetries discussed here exist in principle for any real representation for the fermions,

not only the adjoint one.

We define the matrix C = iγ2γ0 and we can define a new fermion field

q̃Ri ≡ CqT
Li . (2.7)
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The transpose in (2.7) works on the Dirac (and later also flavour) indices but not on the

gauge indices. The field q̃Ri has the same transformation properties under the gauge group

as qR and is also a right-handed fermion.1 In terms of the big matrices

q̂ =

(

qR
q̃R

)

, V̂µ =

(

rµ 0

0 −lTµ

)

M̂ =

(

0 M
MT 0

)

. (2.8)

The Lagrangian (2.6) becomes

L = trc

(

q̂iγµDµq̂
)

+ trc

(

q̂γµV̂µq̂j

)

− 1

2
trc

(

q̂CM̂q̂
T
)

− 1

2
trc

(

q̂TCM̂†q̂
)

. (2.9)

The Lagrangian (2.9) has clearly a larger symmetry group, SU(2NF ) as compared to QCD

case above when we extend the external fields to the full matrices and have as symmetry

transformations:

q̂ → ĝq̂ , V̂µ → ĝV̂µĝ
† + iĝ∂µĝ

† , M̂ → ĝM̂ĝT . (2.10)

The Vafa-Witten argument shows that also in this case the vector symmetries remain

unbroken. We expect again a flavour neutral vacuum condensate 〈trc (q̄q)〉 which can be

written as 〈trc

(

q̂TCJS q̂
)

〉 + h.c. with

JS =

(

0 I

I 0

)

(2.11)

and I the NF × NF unit matrix. This condensate breaks the the symmetry group down

to SO(2NF ).

2.3 Nc = 2

The fundamental representation of SU(2) is pseudo-real. The Lagrangian enhanced with

external fields reads

L = qLiiγ
µDµqLi + qRiiγ

µDµqRi + qLiγ
µlµijqLj + qRiγ

µrµijqRj

−qRiMijqLj − qLiM†
ijqRj . (2.12)

The covariant derivative is given by Dµq = ∂µq − iGµq.

We can define a field q̃R as in the previous section via

q̃Rαi = ǫαβCq
T
Lβi , (2.13)

with α, β gauge group indices, ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0 and C = iγ2γ0 as defined

before. The field q̃R is a right handed-handed fermion that transforms as the fundamental

representation of SU(2).

1We have chosen right-handed rather than left-handed in order to end up with transformations for fields

that look most like those for the QCD case in [2, 3].
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In terms of the big matrices

q̂ =

(

qR
q̃R

)

, V̂µ =

(

rµ 0

0 −lTµ

)

M̂ =

(

0 −M
MT 0

)

. (2.14)

The Lagrangian (2.12) becomes

L = q̂iγµDµq̂ + q̂γµV̂µq̂Lj −
1

2
q̂αCǫαβM̂q̂

T
β − 1

2
q̂αǫαβCM̂†q̂β . (2.15)

This has again much larger symmetry group, SU(2NF ) as compared to QCD

case above when we extend the external fields to the full matrices and have as

symmetry transformations:

q̂ → ĝq̂ , V̂µ → ĝV̂µĝ
† + iĝ∂µĝ

† , M̂ → ĝM̂ĝT . (2.16)

The Vafa-Witten argument shows that also in this case the vector symmetries remain

unbroken and we expect again a flavour neutral vacuum condensate 〈q̄q〉 which can be

written as 〈q̂αǫαβCJAq̂β〉 + h.c. with

JA =

(

0 −I

I 0

)

(2.17)

and I the NF × NF unit matrix. This condensate breaks the the symmetry group down

to Sp(2NF ).

3 Effective field theory

In this section we will show how the three cases can be brought into an extremely similar

form. That will allow to take over directly much of the technology developed for the

QCD case to the other cases. We assume the reader to be familiar with ChPT and EFT.

Introductions can be found in [17]. We will use the terminology LO, NLO and NNLO for

the usual powercounting of order p2, p4 and p6.

3.1 QCD

The Goldstone bosons from the spontaneous symmetry breakdown live in the space of possi-

ble vacua. For QCD and generalizations this is in the form of a nonzero vacuum condensate

〈qLjqRi〉 =
1

2
〈qq〉δij . (3.1)

This vacuum is left unchanged by the vector transformations with gL × gR ∈ SU(NF )L ×
SU(NF )R and gL = gR. The unbroken symmetry is SU(NF ). The broken symmetry part

of the group are the axial transformations wit gR = g†L ≡ u, they rotate the vacuum into

〈qLjqRi〉rotated =
1

2
〈qq〉Uij (3.2)
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with U = gRg
†
L = u2. The special unitary matrix U describes the space of possible vacua

and varies under the symmetry as

U → gRUg
†
L . (3.3)

This matrix U can be used to construct the Lagrangians as was done in [3]. The covariant

derivative on U is defined as

DµU = ∂µU − irµU + iUlµ . (3.4)

The lowest order Lagrangian is

L =
F 2

4
〈DµUD

µU † + χU † + Uχ†〉 , (3.5)

with χ = 2B0M and 〈A〉 = trF (A) This has the full global symmetry as can be checked

using the transformations (2.2) and (3.3). In terms of the pion fields πa the matrix u can

be parametrized as

u = exp

(

i√
2F

πaT a

)

. (3.6)

The T a are the generators of SU(NF ) and normalized as trF

(

T aT b
)

= δab.

Let us now do the same analysis using the general formalism (CCWZ) [16]. We only

look at the properties in the neighbourhood of the unit matrix here. For the perturbative

treatment we do here that is sufficient. The global symmetry group G has generators T a

which are split up in a set of conserved generators Qa and broken generators Xa. The Qa

generate the unbroken symmetry group H while the generators Xa generate in a sense the

manifold of possible vacua, the quotient G/H . We must now find a way to parametrize

the manifold G/H and define covariant derivatives in general. The manifold G/H and the

group H we parametrize with

û = exp (iφaXa) ∈ G/H , ĥ = exp (iǫaT a) ∈ H (3.7)

The symmetry transformation we define using the property that any group element ĝ′ can

be written in the form

ĝ′ = û′ĥ , (3.8)

where both û′ and ĥ are unique and of the form (3.7). The symmetry transformation on û

by a group element ĝ ∈ G is defined as

û→ ĝûĥ† (3.9)

where ĥ is the ĥ of (3.8) needed to bring ĝ′ = ĝû in the standard form (3.8). Note that ĥ

is a nonlinear function of both û and ĝ. It is sometimes called the compensator.

The covariant derivatives are defined by using the fact that any variation ĝδĝ† is an

element of the Lie algebra and can be written as a linear combination of the generators.

The same is true for ĝ
(

∂µ − iV̂µ

)

ĝ† if we include external fields V̂µ transforming as V̂µ →
ĝV̂µĝ

† + iĝ∂µĝ
†. We define [16]

û†
(

∂µ − iV̂µ

)

û ≡ Γ̂µ − i

2
ûµ , Γ̂µ = Γa

µQ
a , ûµ = ua

µX
a . (3.10)

– 6 –
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i.e. Γ̂µ is in the conserved part and ûµ in the broken part of the Lie algebra. The transfor-

mation under the group G can be derived from (3.8) and is

Γ̂µ → ĥΓ̂µĥ
† + ĥ∂µĥ

† , ûµ → ĥûµĥ
† . (3.11)

ûµ can be used to construct Lagrangians and covariant derivatives on objects ψ transform-

ing as ψ → ĥψ are defined as

∇̂µψ = ∂µψ + Γ̂µψ . (3.12)

It can be checked that ∇̂µψ → ĥ∇̂µψ. The external fields appear as (axial) vector fields V̂µ

and (pseudo) scalar fields M̂. The external fields V̂µ show up in ûµ, covariant derivatives

∇̂µ and field strengths V̂µν ≡ ∂µV̂ν−∂ν V̂µ−i
[

V̂µ, V̂ν

]

. The latter can be made to transform

simpler by defining the objects

f̂µν ≡ û†V̂µν û→ ĥf̂µν ĥ
† . (3.13)

M̂ → ĝM̂ĝ† can similarly be made into

χ̂ ≡ û†M̂û→ ĥχ̂ĥ† . (3.14)

If there exists extra discrete symmetries like parity (P ) that leave the unbroken part of

the group invariant objects O like f̂µν can be split into pieces that are independent via

O± ≡ O ± P (O).

In the effective field theory for QCD in terms of NF ×NF matrices the notation usually

used has the objects with the associated symmetry transformations:

u = exp

(

i√
2F

πaT a

)

→ gRuh
† = hug†L ,

Γµ =
1

2

(

u†(∂µ − irµ)u+ u(∂µ − lµ)u†
)

→ hΓµh
† + ih∂µh

† ,

uµ = i
(

u†(∂µ − irµ)u− u(∂µ − lµ)u†
)

→ huµh
† ,

∇µO = ∂µO + ΓµO −OΓµ → h∇µOh
† for O → hOh† ,

χ± = u†χu† ± uχ†u→ hχ±h
† ,

f±µν = ulµνu
† ± u†rµνu .→ hf±µνh

† (3.15)

lµν and rµν are the field strengths from lµ and rµ. T a are the SU(NF ) generators. These

can be related to the general objects defined in the CCWZ way via

û =

(

u 0

0 u†

)

, ûµ =

(

uµ 0

0 −uµ

)

, Γ̂µ =

(

Γµ 0

0 Γµ

)

· · · . (3.16)

χ± and f̂±µν are constructed from χ̂ and f̂µν using parity. These objects have been used

to construct the NLO Lagrangian and the NNLO Lagrangian [14]. One of the nontrivial

relations used there was

∇µuν −∇νuµ = −f−µν . (3.17)

– 7 –
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In this notation the lowest order Lagrangian is

L2 =
F 2

4
〈uµu

µ + χ+〉 . (3.18)

The NLO Lagrangian derived by [2] reads (here in the version for arbitrary NF )

L4 = L0〈uµuνuµuν〉 + L1〈uµuµ〉〈uνuν〉 + L2〈uµuν〉〈uµuν〉 + L3〈uµuµu
νuν〉

+L4〈uµuµ〉〈χ+〉 + L5〈uµuµχ+〉 + L6〈χ+〉2 + L7〈χ−〉2 +
1

2
L8〈χ2

+ + χ2
−〉

−iL9〈f+µνu
µuν〉 +

1

4
L10〈f2

+ − f2
−〉 +H1〈lµν l

µν + rµνr
µν〉 +H2〈χχ†〉 . (3.19)

3.2 Adjoint

The vacuum in this case can be characterized by the condensate

〈q̂T
i Cq̂j〉 =

1

2
〈qLqR〉JSij . (3.20)

Under the symmetry group g ∈ SU(2NF ) this moves around as

JS → gJSg
T . (3.21)

The unbroken part of the group is given by the generators Qa and the broken part by the

generators Xa which satisfy

JSQ
a = −QaTJS , JSX

a = XaTJS . (3.22)

Just as in the QCD case we can now construct a rotated vacuum in general by using the

broken part of the symmetry group on the vacuum. This leads to a matrix2

U = uJSu
T → gUgT with u = exp

(

i√
2F

πaXa

)

. (3.23)

The matrix u transforms as in the general CCWZ case as

u→ guh† . (3.24)

The earlier work used the matrix U to describe the Lagrangian [8]. Here we will use the

CCWZ scheme to obtain a notation that is formally identical to the QCD case. We add full

2NF × 2NF matrices of external fields Vµ and M̂ . We need to obtain the Γµ and uµ parts

of u† (∂µ − iVµ) u. Here several observations are useful. Eqs. (3.22) have as a consequence

that matrices like u satisfy

uJS = JSu
T , JSu = uTJS . (3.25)

2In section 3.1 we added a hat to many quantities to distinguish the NF ×NF and 2NF ×2NF matrices.

This is not needed here and we only keep the hat explicitly on M.

– 8 –
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A general matrix F can be split two parts, one behaving as the broken part, the other as

the unbroken part of the group generators. i.e.

F = F + F̃ ,

FJS = −JSF
T
, F̃ JS = F̃ TJS ,

F =
1

2

(

F − JSF
TJS

)

,

F̃ =
1

2

(

F + JSF
TJS

)

. (3.26)

This means that we obtain

uµ = i
(

u†(∂µ − iVµ)u− u(∂µ + iJSV
T
µ JS)u†

)

,

Γµ =
1

2

(

u†(∂µ − iVµ)u+ u(∂µ + iJSV
T
µ JS)u†

)

. (3.27)

Here we used the properties (3.25). With these quantities we can construct covariant

derivatives and Lagrangians. The formal similarity to the QCD case is obviously there if

we also use for the vector external fields

lµ = −JSV
T
µ JS , rµ = Vµ . (3.28)

The analogy goes even further since vµ = rµ+lµ corresponds to the currents from conserved

generators and aµ = rµ− lµ to the currents from the spontaneously broken generators. The

equivalent quantities to the field strengths are

f±µν = JSuVµνu
†JS ± uVµνu

† (3.29)

with Vµν = ∂µVν − ∂νVµ − i (VµVν − VνVµ) and for the mass matrix

χ± = u†χu†TJS ± JSu
Tχ†u

= u†χJSu
† ± uJSχ

†u , (3.30)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form as (3.18)

and (3.19) but now with uµ, χ± and f±µν as defined in (3.27), (3.29) and (3.30).

3.3 Two colours

The vacuum in this case can be characterized by the condensate 〈q̂T
αiCǫαβ q̂βj〉 =

1
2 〈qLqR〉JAij . Under the symmetry group g ∈ SU(2NF ) this moves around as JA →
gJAg

T .The unbroken part of the group is given by the generators Qa and the broken

part by the generators Xa which satisfy JAQ
a = −QaTJA , JAX

a = XaTJA . Just as in

the QCD and the adjoint case we construct a rotated vacuum by using the broken part of

the symmetry group on the vacuum. This leads to a matrix3 U = uJAu
T → gUgT with

u = exp
(

i√
2 F
πaXa

)

.The matrix u transforms as u→ guh† .Ref. [8] used the matrix U to

3 The formulas in this subsection are almost identical with those in the previous subsection but J
2

A = −1

while J
2

S = 1. We have put in those by introducing J
T

A rather than JA in a few places.

– 9 –
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describe the Lagrangian. Here we use the CCWZ scheme. We add full 2NF ×2NF matrices

of external fields Vµ and M̂ and then need to obtain the Γµ and uµ parts of u† (∂µ − iVµ) u.

Matrices like u satisfy uJA = JAu
T and JAu = uTJA.

A general matrix F can be split two parts, one behaving as the broken part, the other

as the unbroken part of the group generators. i.e.

F = F + F̃ , FJA = −JAF
T
, F̃ JT

A = F̃ TJA ,

F =
1

2

(

F − JAF
TJT

A

)

, F̃ =
1

2

(

F + JAF
TJT

A

)

. (3.31)

Using this, we obtain

uµ = i
(

u†(∂µ − iVµ)u− u(∂µ + iJAV
T
µ J

T
A )u†

)

,

Γµ =
1

2

(

u†(∂µ − iVµ)u+ u(∂µ + iJAV
T
µ J

T
A )u†

)

. (3.32)

Covariant derivatives and Lagrangians are constructed as above. The formal similarity to

the QCD case is once more obviously if we use for the vector external fields

lµ = −JAV
T
µ J

T
A , rµ = Vµ . (3.33)

Again vµ = rµ + lµ corresponds to the currents from conserved generators and aµ = rµ − lµ
to the currents from the spontaneously broken generators. The equivalent quantities to

the field strengths are

f±µν = JAuVµνu
†JT

A ± uVµνu
† (3.34)

with Vµν = ∂µVν − ∂νVµ − i (VµVν − VνVµ) and for the mass matrix

χ± = u†χu†TJT
A ± JAu

Tχ†u = u†χJT
Au

† ± uJAχ
†u , (3.35)

with χ = 2B0M̂. The Lagrangians at LO and NLO have exactly the same form as (3.18)

and (3.19) but with uµ, χ± and f±µν as defined in this subsection.

4 The divergence structure at NLO

When going beyond tree level renormalization becomes necessary. A thorough discussion

of renormalization in ChPT at NNLO can be found in [15, 18]. We use here the same

conventions and subtraction procedure. This means that the NLO LECs are replaced by

Li = (cµ)d−4 [ΓiΛ + Lr
i (µ)] , (4.1)

with Λ = 1/(16π2(d − 4)) and ln c = −[ln 4π + Γ′(1) + 1]/2. The constants Γi were

calculated for the QCD case in [3]. The same method can be generalized to the case here.

The calculation is extremely similar for all three cases. The method is the same as the one

in [3]. We split u in a classical and a quantum part

u = uce
iξ with ξ =

∑

a

ξaXa . (4.2)
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The second variation w.r.t. ξ of the LO Lagrangian can be rewritten in the form

L =
F 2

2

(

dµξ
adµξa − ξaσ̃abξb

)

, (4.3)

with dµξ
a = ∂µξ

a + Γ̃ab
µ ξ

b. The divergence at one-loop level is given by [3]

− 1

16π2(d− 4)

(

1

12
Γ̃ab

µνΓ̃
baµν +

1

2
σ̃abσ̃ba

)

. (4.4)

Notice that the indices here run over the broken generators and Γ̃ab
µν = ∂µΓ̃ab

ν − ∂ν Γ̃ab
µ +

Γ̃ac
µ Γ̃cb

ν − Γ̃ac
ν Γ̃cb

µ .

The expansion for all three cases is identical and leads to

Γ̃ab
µ = −trF

(

[Xa,Xb]Γµ

)

,

σ̃ab = −1

8
trF

(

{Xa,Xb} (χ+ + uµu
µ)
)

+
1

2
trF

(

XauµX
buµ
)

. (4.5)

The difficulty in evaluating (4.4) is now rewriting the sums over broken generators into

traces over the original matrices uµ, . . .. In the QCD case, the Xa are SU(NF ) generators

and one can use the formulas with the trF (A) going from 1, . . . , NF .

QCD :

trF (XaAXaB) = trF (A) trF (B) − 1

NF
trF (AB) ,

trF (XaA) trF (XaB) = trF (AB) − 1

NF
trF (A) trF (B) . (4.6)

There exist similar formulas for the adjoint case now with trF (A) going from 1, . . . , 2NF .

Adjoint :

trF (XaAXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(

AJSB
TJS

)

− 1

2NF
trF (AB) ,

trF (XaA) trF (XaB) =
1

2
trF (AB) +

1

2
trF

(

AJSB
TJS

)

− 1

2NF
trF (A) trF (B) . (4.7)

The equivalent formula for the two-colour case is [13], again with trF (A) going from

1, . . . , 2NF .

2 − colour :

trF (XaAXaB) =
1

2
trF (A) trF (B) +

1

2
trF

(

AJAB
TJA

)

− 1

2NF
trF (AB) ,

trF (XaA) trF (XaB) =
1

2
trF (AB) − 1

2
trF

(

AJAB
TJA

)

− 1

2NF
trF (A) trF (B) . (4.8)

In all three cases these lead to

Γ̃ab
µν = −trF

(

[Xa,Xb]Γµν

)

. (4.9)

Repetitive use of these identities allows to rewrite (4.4) in the form of (3.19). These

divergences are then absorbed into the redefinition of the NLO LECs (4.1). The needed

constants Γi for the three cases are given in table 1. We agree with [3] for the QCD case,

have a small discrepancy with [13] for the two-colour case, our coefficients for Γ0 are Γ3

are different. The adjoint case is obtained here for the first time.
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i QCD Adjoint 2-colour

0 NF/48 (NF + 4)/48 (NF − 4)/48

1 1/16 1/32 1/32

2 1/8 1/16 1/16

3 NF/24 (NF − 2)/24 (NF + 2)/24

4 1/8 1/16 1/16

5 NF /8 NF /8 NF /8

6 (N2
F + 2)/(16N2

F ) (N2
F + 1)/(32N2

F ) (N2
F + 1)/(32N2

F )

7 0 0 0

8 (N2
F − 4)/(16NF ) (N2

F +NF − 2)/(16NF ) (N2
F −NF − 2)/(16NF )

9 NF/12 (NF + 1)/2 (NF − 1)/2

10 −NF /12 −(NF + 1)/2 −(NF − 1)/2

1’ −NF /24 −(NF + 1)/4 −(NF + 1)/4

2’ (N2
F − 4)/(8NF ) (N2

F +NF − 2)/(8NF ) (N2
F −NF − 2)/(8NF )

Table 1. The coefficients Γi for the three cases that are needed to absorb the divergences at NLO.

The last two lines correspond to the terms with H1 and H2.

5 The calculation: mass, decay constant and condensate

In this section we calculate the corrections to the vacuum expectation value, the meson

mass and the decay constant. The calculations in the work on three-flavour ChPT were

done using FORM [19] and in the loops an explicit sum over all possible particles was

always implemented. For this work we have rewritten the flavour routines used in that

work to use a general sum over the flavour indices and since we always calculate in the

case where M = diag(m̂, . . . , m̂) we then use the trace formulas of the previous section to

perform the sum.

We have checked that our calculations reproduce all the known results and for the

QCD case that all infinities cancel when the NNLO divergence of [15] is used. For the

adjoint and two-colour case we observe that the nonlocal divergence cancels as it should.

The diagrams for the vacuum expectation value are shown in figure 1. The lowest

order is the same for all three cases

〈qq〉LO ≡
∑

i=1,NF

〈qRiqLi + qLiqRi〉LO = −NFB0F
2 . (5.1)

We use M2 as notation for the lowest order meson mass

M2 = 2B0m̂ (5.2)

and in addition the function

A(M2) = − M2

16π2
log

M2

µ2
. (5.3)

The integrals needed at the two-loop level are evaluated with the methods of [20] and they

can all be expressed in terms of A(M2).
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(a)

⊗

(b)

⊙

(c) (d)

⊗

(e) (f)

×

(g) (h)

Figure 1. The diagrams up to order p6 for 〈qq〉. The lines are meson propagators and the vertices

are: ◦ a p2 insertion of qq, ⊗ a p4 insertion of qq, ⊙ a p6 insertion of qq, • a p2 vertex and × a

p4 vertex.

We express the final result as

〈qq〉 = 〈qq〉LO + 〈qq〉NLO + 〈qq〉NNLO . (5.4)

The individual parts can be written in terms of logarithms and analytic contributions as

〈qq〉NLO = 〈qq〉LO

(

aV
A(M2)

F 2
+ bV

M2

F 2

)

,

〈qq〉NNLO = 〈qq〉LO

(

cV
A(M2)2

F 4
+
M2A(M2)

F 4

(

dV +
eV

16π2

)

+
M4

F 4

(

fV +
gV

16π2

)

)

. (5.5)

The coefficients for the three cases are given in table 2. Note that we use the same notation

for the LECs in the three cases but they are different LECs and in addition different

for different values of NF . The infinite parts can be absorbed in the NNLO Lagrangian

coefficients by writing

ri = (cµ)2(d−4)

(

rr
i − Γ

(2)
i Λ2 −

(

1

16π2
Γ

(1)
i + Γ

(L)
i

)

Λ

)

. (5.6)

The subtractions needed for the QCD case have been derived in general before in [15]. The
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2
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QCD

aV NF − 1
NF

bV 16NFL
r
6 + 8Lr

8 + 4Hr
2

cV
3
2

(

−1 + 1
N2

F

)

dV −24
(

N2
F − 1

)

(

Lr
4 − 2Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

eV 1 − 1
N2

F

fV 48
(

Kr
25 +NFK

r
26 +N2

FK
r
27

)

gV 8
(

N2
F − 1

)

(

Lr
4 − 2Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

Adjoint

aV NF + 1
2 − 1

2NF

bV 32NFL
r
6 + 8Lr

8 + 4Hr
2

cV
3
8

(

−1 + 1
N2

F

− 2
NF

+ 2NF

)

dV −12
(

2N2
F +NF − 1

)

(

2Lr
4 − 4Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

eV
1
4

(

1 − 1
N2

F

+ 2
NF

− 2NF

)

fV rr
V A

gV 4
(

2N2
F +NF − 1

)

(

2Lr
4 − 4Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

2-colour

aV NF − 1
2 − 1

2NF

bV 32NFL
r
6 + 8Lr

8 + 4Hr
2

cV
3
8

(

−1 + 1
N2

F

+ 2
NF

− 2NF

)

dV −12
(

2N2
F −NF − 1

)

(

2Lr
4 − 4Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

eV
1
4

(

1 − 1
N2

F

− 2
NF

+ 2NF

)

fV rr
V T

gV 4
(

2N2
F −NF − 1

)

(

2Lr
4 − 4Lr

6 + 1
NF

(Lr
5 − 2Lr

8)
)

Table 2. The coefficients aV , . . . , gV appearing in the expansion of the vacuum expectation value.

adjoint and two-colour case can be made finite by the following:

Γ
(2)
V A =

3

2

(

1 − 1

N2
F

+ 2
1

NF
− 2NF

)

,

Γ
(L)
V A = 24

(

2N2
F +NF − 1

)

(

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)

)

,

Γ
(1)
V A = 0 ,

Γ
(2)
V T =

3

2

(

1 − 1

N2
F

− 2
1

NF
+ 2NF

)

,

Γ
(L)
V T = 24

(

2N2
F −NF − 1

)

(

2Lr
4 − 4Lr

6 +
1

NF
(Lr

5 − 2Lr
8)

)

,

Γ
(1)
V T = 0 . (5.7)
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Figure 2. The diagrams up to order p6 for the meson self energy. The lines are meson propagators

and the vertices are: • a p2 vertex, × a p4 vertex and a crossed box a p6 vertex. The diagrams for

the decay constant are the same with one external meson leg replaced by an axial current.

This result agrees at NLO with [12] for the QCD case and [13]4 for the 2-colour case. It

also agrees for NF = 3 at NNLO with [21, 22]. The remaining results are new.

We perform the expansion of the physical meson mass to the same order. The physical

mass can be written as

M2
phys = M2

LO +M2
NLO +M2

NNLO . (5.8)

The lowest order was already given in (5.2) and is the same for all three cases. The two

higher orders can be expanded in logarithms and analytical contributions via

M2
NLO = M2

(

aM
A(M2)

F 2
+ bM

M2

F 2

)

, (5.9)

M2
NNLO = M2

(

cM
A(M2)2

F 4
+
M2A(M2)

F 4

(

dM +
eM

16π2

)

+
M4

F 4

(

fM +
gM

16π2
+

hM

(16π2)2

))

.

The mass can be calculated by finding the zeros of the inverse propagator, see e.g. the

discussion [23]. The relevant one-particle irreducible diagrams are shown in figure 2. The

coefficients for the three cases are given in table 3. The subtractions needed for the QCD

case have been derived in general before in [15]. The adjoint and two-colour case can be

4Those authors used a different normalization for F . Ours corresponds to Fπ ≈ 93 MeV for the QCD

case and Nc = 3.
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(
2
0
0
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QCD

aM − 1
NF

bM 8NF (2Lr
6 − Lr

4) + 8 (2Lr
8 − Lr

5)
cM −1

2 + 9
2N2

F

+ 3
8N

2
F

dM 8Lr
0(− 3

NF
+NF ) + 8Lr

1(−1 + 2N2
F ) + 4Lr

2(4 +N2
F ) + Lr

3(− 24
NF

+ 20NF )

+Lr
4(40 − 16N2

F ) + Lr
5(

40
NF

− 16NF ) + Lr
6(−16 + 16N2

F ) + Lr
8(− 80

NF
+ 32NF )

eM −5
3 + 4

N2

F

+ 19
16N

2
F

fM −32Kr
17 − 16Kr

19 − 16Kr
23 + 48Kr

25 + 32Kr
39

+NF (−32Kr
18 − 16Kr

20 − 16Kr
21 + 48Kr

26 + 32Kr
40)

+N2
F (−16Kr

22 + 48Kr
27) + 64(NFL

r
4 + Lr

5)(NFL
r
4 + Lr

5 − 2NFL
r
6 − 2Lr

8)
gM − 4

NF
(Lr

0 + Lr
3) + 4Lr

1 + 2NF (2Lr
0 + Lr

3) + 2N2
FL

r
2

−8[Lr
4 − 2Lr

6 + 1
NF

(Lr
5 − 2Lr

8)]

hM −1
4 + 3

4
1

N2

F

+ 169
384N

2
F

Adjoint

aM
1
2 − 1

2NF

bM 16NF (2Lr
6 − Lr

4) + 8(2Lr
8 − Lr

5)

cM
3
8

(

1 + 3
N2

F

− 4
NF

+NF +N2
F

)

dM Lr
0(12 − 12 1

NF
+ 8NF ) + 8Lr

1(−1 + 2NF + 4N2
F )

+4Lr
2(4 +NF + 2N2

F ) + Lr
3(12 − 12

NF
+ 20NF )

+Lr
4(40 − 40NF − 32N2

F ) + Lr
5(−20 + 20

NF
− 16NF )

+16Lr
6(−1 + 3NF + 2N2

F ) + Lr
8(40 − 40

NF
+ 32NF )

eM −2
3 + 1

N2

F

− 3
4

1
NF

+ 77
48NF + 19

16N
2
F

fM rr
MA + 64(2NFL

r
4 + Lr

5)(2NFL
r
4 + Lr

5 − 4NFL
r
6 − 2Lr

8)
gM 2Lr

0(1 − 1
NF

+ 2NF ) + 4Lr
1 + 2NFL

r
2(1 + 2NF ) + 2Lr

3(1 − 1
NF

+NF )

−8(1 −NF )(Lr
4 − 2Lr

6) + 4(1 − 1
NF

)(Lr
5 − 2Lr

8)

hM − 1
16 + 3

16
1

N2

F

− 3
16

1
NF

+ 193
384NF + 169

384N
2
F

2-colour

aM −1
2 − 1

2NF

bM 16NF (2Lr
6 − Lr

4) + 8(2Lr
8 − Lr

5)

cM
3
8

(

1 + 3
N2

F

+ 4
NF

−NF +N2
F

)

dM Lr
0(−12 − 12 1

NF
+ 8NF ) + 8Lr

1(−1 − 2NF + 4N2
F )

+4Lr
2(4 −NF + 2N2

F ) + Lr
3(−12 − 12

NF
+ 20NF )

+Lr
4(40 + 40NF − 32N2

F ) + Lr
5(20 + 20

NF
− 16NF )

+16Lr
6(−1 − 3NF + 2N2

F ) + Lr
8(−40 − 40

NF
+ 32NF )

eM −2
3 + 1

N2

F

+ 3
4

1
NF

− 77
48NF + 19

16N
2
F

fM rr
MT + 64(2NFL

r
4 + Lr

5)(2NFL
r
4 + Lr

5 − 4NFL
r
6 − 2Lr

8)
gM −2Lr

0(1 + 1
NF

− 2NF ) + 4Lr
1 − 2NFL

r
2(1 − 2NF ) − 2Lr

3(1 + 1
NF

−NF )

−8(1 +NF )(Lr
4 − 2Lr

6) − 4(1 + 1
NF

)(Lr
5 − 2Lr

8)

hM − 1
16 + 3

16
1

N2

F

+ 3
16

1
NF

− 193
384NF + 169

384N
2
F

Table 3. The coefficients aM , . . . , gM appearing in the expansion of the mass.
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made finite by the following:

Γ
(2)
MA =

1

2

(

1 − 9

N2
F

+
12

NF
− 7NF − 3N2

F

)

,

Γ
(L)
MA = −8

[

(

3 − 3

NF
+ 2N

)

Lr
0 + 2

(

−1 + 2NF + 4N2
F

)

Lr
1 +

(

4 +NF + 2N2
F

)

Lr
2

+

(

3 − 3

NF
+ 5NF

)

Lr
3 +

2

NF
(2 − 2NF − 3N2

F )(2NFL
r
4 + Lr

5)

+4
(

−1 + 3NF + 4N2
F

)

Lr
6 +

(

10 − 10

NF
+ 12NF

)

Lr
8)

]

,

Γ
(1)
MA = −1

4

(

−5

3
+

5

N2
F

− 5

NF
+

67

12
NF +

47

12
N2

F

)

,

Γ
(2)
MT =

1

2

(

1 − 9

N2
F

− 12

NF
+ 7NF − 3N2

F

)

,

Γ
(L)
MT = −8

[

(

−3 − 3

NF
+ 2NF

)

Lr
0 + 2

(

−1 − 2NF + 4N2
F

)

Lr
1 +

(

4 −NF + 2N2
F

)

Lr
2

+

(

−3 − 3

NF
+ 5NF

)

Lr
3 +

2

NF
(2 + 2NF − 3N2

F )(2NFL
r
4 + Lr

5)

+4
(

−1 − 3NF + 4N2
F

)

Lr
6 +

(

−10 − 10

NF
+ 12NF

)

Lr
8)

]

,

Γ
(1)
MT = −1

4

(

−5

3
+

5

N2
F

+
5

NF
− 67

12
NF +

47

12
N2

F

)

. (5.10)

This result agrees at NLO with [12] for the QCD case and [13] for the 2-colour case. It

also agrees with the masses for two and three flavours in the QCD case as calculated

in [18, 23–25]. The remaining results are new.

We perform the expansion of the physical decay constant to the same order. The decay

constant can be written as

Fphys = FLO + FNLO + FNNLO . (5.11)

The lowest order is FLO = F and is the same for all three cases. The two higher orders

can be expanded in logarithms and analytical contributions via

FNLO = F

(

aF
A(M2)

F 2
+ bF

M2

F 2

)

, (5.12)

FNNLO = F

(

cF
A(M2)2

F 4
+
M2A(M2)

F 4

(

dF +
eF

16π2

)

+
M4

F 4

(

fF +
gF

16π2
+

hF

(16π2)2

))

.

The decay constant can be calculated by computing the one-meson matrix element of the

axial current. The diagrams for the wave-function renormalization are the same as those

for the mass in figure 2 and those for the bare matrix-element are again those of figure 2

but with one external meson leg replaced by the axial current. The coefficients for the
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1
1
(
2
0
0
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1
1
6

QCD

aF
1
2NF

bF 4NFL
r
4 + 4Lr

5

cF −1
2 − 3

16N
2
F

dF
4

NF
(3Lr

0 + 3Lr
3 − Lr

5) + 4Lr
1 − 8Lr

2 − 4Lr
4 +NF (−4Lr

0 − 10Lr
3 − 2Lr

5 + 8Lr
8)

+2N2
F (−4Lr

1 − Lr
2 − Lr

4 + 4Lr
6)

eF
2
3 − 1

2N2

F

− 59
96N

2
F

fF −8 (NFL
r
4 + Lr

5)
2 + 8(Kr

19 +Kr
23) + 8NF (Kr

20 +Kr
21) + 8N2

FK
r
22

gF
2

NF
(Lr

0 + Lr
3) − 2Lr

1 +NF (−2Lr
0 − Lr

3 + 4Lr
5 − 8Lr

8) +N2
F (−Lr

2 + 4Lr
4 − 8Lr

6)

hF − 7
24 + 7

8N2

F

+ 1
768N

2
F

Adjoint

aF
1
2NF

bF 8NFL
r
4 + 4Lr

5

cF −1
4 + 3

16NF − 3
16N

2
F

dF Lr
0(−6 + 6

NF
− 4NF ) + 4Lr

1(1 − 2NF − 4N2
F ) − 2Lr

2(4 +NF + 2N2
F )

+Lr
3(−6 + 6

NF
− 10NF ) − 4Lr

4(1 −NF +N2
F ) + 2Lr

5(1 − 1
NF

−NF )

+8NF (2NFL
r
6 + Lr

8)

eF
7
24 − 1

8N2

F

+ 1
8NF

− 29
32NF − 59

96N
2
F

fF rr
FA − 8(2NFL

r
4 + Lr

5)
2

gF Lr
0(−1 + 1

NF
− 2NF ) − 2Lr

1 + Lr
2(−NF − 2N2

F ) + Lr
3(−1 + 1

NF
−NF )

8N2
F (Lr

4 − 2Lr
6) + 4NF (Lr

5 − 2Lr
8)

hF − 7
96 + 7

32
1

N2

F

− 7
32

1
NF

+ 19
256NF + 1

768N
2
F

2-colour

aF
1
2NF

bF 8NFL
r
4 + 4Lr

5

cF −1
4 − 3

16NF − 3
16N

2
F

dF Lr
0(6 + 6

NF
− 4NF ) + 4Lr

1(1 + 2NF − 4N2
F ) − 2Lr

2(4 −NF + 2N2
F )

+Lr
3(6 + 6

NF
− 10NF ) − 4Lr

4(1 +NF +N2
F ) − 2Lr

5(1 + 1
NF

+NF )

+8NF (2NFL
r
6 + Lr

8)

eF
7
24 − 1

8N2

F

− 1
8NF

+ 29
32NF − 59

96N
2
F

fF rr
FT − 8(2NFL

r
4 + Lr

5)
2

gF Lr
0(1 + 1

NF
− 2NF ) − 2Lr

1 + Lr
2(NF − 2N2

F ) + Lr
3(1 + 1

NF
−NF )

8N2
F (Lr

4 − 2Lr
6) + 4NF (Lr

5 − 2Lr
8)

hF − 7
96 + 7

32
1

N2

F

+ 7
32

1
NF

− 19
256NF + 1

768N
2
F

Table 4. The coefficients aF , . . . , gF appearing in the expansion of the decay constant.
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three cases are given in table 4. The subtractions needed for the QCD case have been

derived in general before in [15]. The adjoint and two-colour case can be made finite by

the following:

Γ
(2)
FA = 1 − 3

4
NF +

1

4
N2

F ,

Γ
(L)
FA = −4

[

(

−3 +
3

NF
− 2NF

)

Lr
0 + 2

(

1 − 2NF − 4N2
F

)

Lr
1 +

(

−4 −NF − 2N2
F

)

Lr
2

+

(

−3 +
3

NF
− 5NF

)

Lr
3 +

1

NF
(NF − 1)(2NFL

r
4 + Lr

5) + 8N2
FL

r
6 + 4NFL

r
8

]

,

Γ
(1)
FA = −1

8

(

1

3
− 1

N2
F

+
1

NF
− 53

12
NF − 49

12
N2

F

)

,

Γ
(2)
FT = 1 +

3

4
NF +

1

4
N2

F ,

Γ
(L)
FT = −4

[

(

3 +
3

NF
− 2NF

)

Lr
0 + 2

(

1 + 2NF − 4N2
F

)

Lr
1 +

(

−4 +NF − 2N2
F

)

Lr
2

+

(

3 +
3

NF
− 5NF

)

Lr
3 −

1

NF
(1 +NF )(2NFL

r
4 + Lr

5) + 8N2
FL

r
6 + 4NFL

r
8

]

,

Γ
(1)
FT = −1

8

(

1

3
− 1

N2
F

− 1

NF
+

53

12
NF − 49

12
N2

F

)

. (5.13)

This result agrees at NLO with [12] for the QCD case and [13] for the 2-colour case. It also

agrees with the decay constant for two and three flavours in the QCD case as calculated

in [18, 23–25]. The remaining results are new.

The coefficient of the leading logarithm, A(M2)2 is always determined but note that

the coefficient of the subleading logarithm for the vacuum expectation value depends on

LECs that can be determined from the masses.

The expansions (5.5), (5.9) and (5.12) have been written in terms of the lowest order

mass and decay constant. It is possible to reorder the series in various ways. In particular

one can rewrite the series in terms of the physical masses and decay constants instead. The

logarithms come from physical particles propagating so the form in terms of physical masses

might be preferable. There are some indications that in the case of two-flavour QCD this

leads to a better convergence, see e.g. [26]. The physical mass and decay constant expansion

is referred to there as the ξ expansion. We thus rewrite (5.5), (5.9) and (5.12) as

Ophys = OLO +ONLO +ONNLO , (5.14)

with

ONLO = OLO

(

αO

A(M2
phys)

F 2
phys

+ βO

M2
phys

F 2
phys

)

,

ONNLO = OLO

(

γO

A(M2
phys)

2

F 4
phys

+
M2

physA(M2
phys)

F 4
phys

(

δO +
ǫO

16π2

)

+
M4

phys

F 4
phys

(

ζO+
ηO

16π2
+

θO

(16π2)2

))

. (5.15)

– 19 –



J
H
E
P
1
1
(
2
0
0
9
)
1
1
6

We do this for O = V,M,F for the vacuum-expectation-value, mass and decay constant.

The coefficients in the two expansions are related by

αO = aO , βO = bO ,

γO = cO + (2aF − aM )aO ,

δO = dO + (2bF − bM )aO + (2aF − aM )bO , ǫO = eO + aMaO ,

ζO = fO + (2bF − bM )bO , ηO = gO + bMaO ,

θO = hO . (5.16)

These can be easily evaluated using the results in tables 2 to 4.

6 Conclusions

In this work we have calculated the vacuum expectation value, the meson mass and the

meson decay constant in effective field theory to NNLO for the three cases with a simple

underlying vector gauge groups and NF equal mass fermions in the same representation.

We discussed the complex case (QCD), real representation (Adjoint) and pseudo-real rep-

resentation (2-colour).

The three flavour cases have been calculated earlier at NNLO for the QCD case for

the mass, decay constant [21, 25] and condensate [21]. For two flavour QCD the NNLO

expressions exists for the mass and decay constants [18, 24]. For the NF flavour case the

mass, decay constant and the condensate can be found in [12] to NLO. The NNLO expres-

sions here are new. Note that the equal mass case considered here leads to considerably

simpler expressions than those of [23, 25]. We have a slightly different NLO divergence

structure for the two-colour case then [8] but agree with their explicit NLO expressions

for the mass, decay constant and vacuum expectation value. Again the NNLO expressions

here are new. The adjoint case we have extended to NLO in general and to NNLO for the

mass, decay constant and vacuum expectation value. Notice that for all three cases the

coefficient of the leading logarithm at NNLO is fully determined but that the coefficient

of the subleading logarithm at NNLO for the vacuum expectation value depends on LECs

that can be determined from the mass at NLO.

The main motivation behind this work is that these expressions should be use-

ful for extrapolations to zero mass in lattice calculations for dynamical electroweak

symmetry breaking.
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